ORIGINAL ARTICLE

Xiao-Mei Hu · Toshihiko Hirano · Kitaro Oka

Arsenic trioxide induces apoptosis in cells of MOLT-4 and its daunorubicin-resistant cell line via depletion of intracellular glutathione, disruption of mitochondrial membrane potential and activation of caspase-3

Received: 28 October 2002 / Accepted: 19 March 2003 / Published online: 16 May 2003 © Springer-Verlag 2003

Abstract Purpose: To demonstrate that arsenic trioxide (As₂O₃) induces apoptosis via a mitochondrial pathway in both parent T lymphoblastoid leukemia MOLT-4 cells and cells of its daunorubicin-resistant subline, MOLT-4/DNR, expressing functional P-gp. Methods: Cell growth was measured using an MTT assay. Cell viability was determined using a dye exclusion test. Intracellular glutathione (GSH) was measured using a glutathione assay kit. Mitochondrial membrane potential (MMP) was assessed by rhodamine 123 (Rh123) staining intensity on flow cytometry. Caspase-3 activity was evaluated using a commercially available assay kit on flow cytometry. The percentage of cells undergoing apoptosis was estimated in terms of caspase +/PI cells on flow cytometry after assessment for activation of caspase-3 by adding PI. Results: MOLT-4 cells and MOLT-4/DNR cells were similarly sensitive to the apoptosis-inducing effect of As₂O₃. Buthionine sulfoxide (BSO) and ascorbic acid (AA) rendered these cells more sensitive to As₂O₃, whereas N-acetylcysteine (NAC) reduced this sensitivity. BSO and AA decreased, but NAC increased, the intracellular GSH contents of both MOLT-4 and MOLT-4/DNR cells. Decreasing GSH with BSO potentiated As₂O₃-mediated growth inhibition, disruption of MMP, activation of caspase-3 and apoptosis of cells. Clinically relevant doses of AA enhanced the anticancer effects of As₂O₃ via the disruption

X.-M. Hu·T. Hirano (☒)·K. Oka Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, 192-0392 Tokyo, Japan

E-mail: Hiranot@ps.toyaku.ac.jp

Tel.: +81-426-765796 Fax: +81-426-765798

Present address: X.-M. Hu National Therapeutic Center of Hematology of Traditional Chinese Medicine, XiYuan Hospital, China Academy of Traditional Chinese Medicine, 100091 Beijing, P.R. China of MMP, activation of caspase-3, and induction of apoptosis. In contrast, increase GSH levels with NAC attenuated all of these As₂O₃-mediated actions. *Conclusions*: The sensitivity of MOLT-4 and MOLT-4/DNR cells to As₂O₃ was associated with the intracellular GSH content. As₂O₃ induced apoptosis in parent MOLT-4 cells and MOLT-4/DNR cells expressing functional P-gp via depletion of intracellular GSH, and subsequent disruption of MMP and activation of caspase-3.

Keywords Arsenic trioxide · Apoptosis · Glutathione · Mitochondrial membrane potential · Caspase-3

Introduction

In response to the observation that patients with chemorefractory acute promyelocytic leukemia (APL) still respond to arsenic trioxide (As₂O₃) therapy [14, 45, 47] and in vitro studies of the effects of As₂O₃ on drugresistant APL cell lines [11], investigations have been initiated to evaluate the therapeutic potential of As₂O₃ in several malignant diseases [44, 56, 57]. Most of the reports suggest that As₂O₃ suppresses growth and induces apoptosis in malignant cells including drug-resistant cells [5, 11, 44, 56, 57].

Some data indicate that As₂O₃ is not sensitive to drug efflux pump mechanisms of resistance [12, 37]. We have established a cell line resistant to daunorubicin (DNR) from T lymphoblastoid leukemia MOLT-4 cells [28]. This resistant cell line, MOLT-4/DNR, has been revealed to overexpress functional P-glycoprotein (P-gp) [28]. Our previous study showed that As₂O₃ is effective in the suppression of growth of MOLT-4 and MOLT-4/DNR cells [15]. Moreover, we found that As₂O₃ induces apoptosis in both MOLT-4 and MOLT-4/DNR cells [15]. MOLT-4/DNR cells have been revealed to be more than ten times more resistant to DNR than the parent MOLT-4 cells, as assessed by an MTT assay [15]. As₂O₃ inhibits growth and induces apoptosis in MOLT-4/DNR

cells without having an influence on their P-gp expression and function [15].

Thus, in the present study, we examined the apoptosis-inducing mechanisms of As₂O₃ in MOLT-4 and MOLT-4/DNR cell lines from the viewpoint of modification of cellular GSH levels, mitochondrial membrane potential (MMP), and caspase-3.

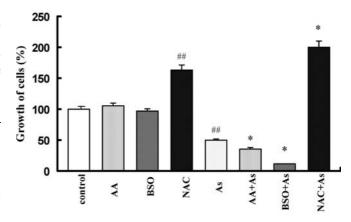
Materials and methods

Reagents

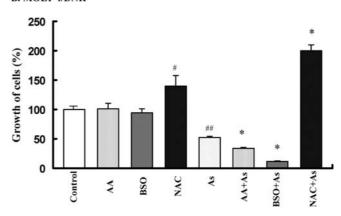
RPMI-1640 medium and fetal bovine serum (FBS) were purchased from Gibco (Grand Island, N.Y.). Cell proliferation kits I and II (MTT) were purchased from Roche Diagnostics (Indianapolis, Ind.). Ascorbic acid (AA), N-acetylcysteine (NAC), L-buthionine-[S,R]-sulfoxide (BSO), rhodamine 123 (Rh123) and As₂O₃ were obtained from Sigma Chemical Company (St. Louis, Mo.). All of the agents were dissolved in phosphate-buffered saline (PBS) and diluted to a working concentration before use. A GSH assay kit was obtained from Cayman Chemical Company (Ann Arbor, Mich.). Metaphosphoric acid (MPA) and triethanolamine (TEAM) were purchased from Aldrich Chemical Company (Milwaukee, Wis.). A PhiPhiLux-G1D2 kit was from MBL (OncoImmunin, Gaithersburg, Md.). Propidium iodide (PI) was from BD PharMingen.

Cell culture

MOLT-4 and MOLT-4/DNR cells were maintained in RPMI-1640 medium containing 10% FBS, 100 U/ml penicillin and 100 µg/ml streptomycin. The leukemia cells were washed and resuspended with the above medium to 5×10^5 cells/ml, then 196 µl cell suspension was placed in each well of a 96-well flat-bottom plate. PBS solutions (4 µl) containing As₂O₃, AA, BSO, and NAC alone or in combination with As₂O₃ with AA, BSO or NAC were added to yield the final indicated concentrations (see Results). PBS (4 µl) was added to the control wells. The cells were incubated for 72 h in an atmosphere comprising 5% CO₂/air at 37°C in a humidified chamber.


MTT assay

After the incubation period, 20 μl of the MTT labeling reagent was added to each well to yield a final concentration of 0.5 mg/ml and the plate was mixed on a microshaker for 10 s. The cells were further incubated for 4 h in a humidified atmosphere. Subsequently, 100 μl solubilization solution (Roche) were added to each well, and the plate was mixed on a microshaker for 10 s and allowed to stand overnight in an incubator in a humidified atmosphere. The spectrophotometric absorbance of the sample was measured on a microplate reader (Corona MT P-32; Corona Company, Ibaragi, Japan) at 570 nm. A dose response curve was plotted for each drug, and the concentrations that yielded 50% inhibition of cell growth (IC50) were calculated.


Viability of cells

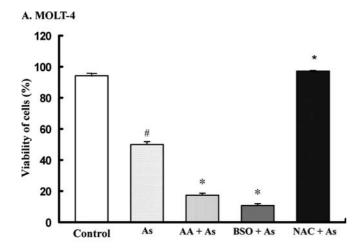
MOLT-4 and MOLT-4/DNR cell lines were cultured by seeding 5×10^5 cells/ml of fresh medium in the presence or absence of As_2O_3 alone or in combination with As_2O_3 with AA, BSO and NAC for 24–96 h in an atmosphere comprising 5% CO_2 /air at 37°C in a humidified chamber. The number or percentage of viable cells was determined by staining cell populations with trypan blue. On the

A. MOLT-4

B. MOLT-4/DNR

Fig. 1A, B Modulation of As₂O₃-mediated growth inhibition of MOLT-4 (**A**) and MOLT-4/DNR (**B**) cells by BSO, AA, and NAC. Cells were treated with 5 μ mol/l of As₂O₃ in the absence or presence of 100 μ mol/l BSO, 125 μ mol/l AA, and 10 mmol/l NAC for 72 h. Cell growth was determined by an MTT assay. Values are the means + SD of three independent experiments. $^{\#}P$ < 0.001 vs control; $^{*}P$ < 0.01 vs As₂O₃ alone

day of determination, four parts of 0.2% trypan blue (w/v in water) were mixed with one part of 5× saline (4.25% NaCl, w/v in water), then one part of the trypan blue saline solution was added to one part of the cell suspension. Subsequently, the cells were loaded into a hemocytometer, and the unstained (viable) cells and the stained (dead) cells were counted separately within 3 min of being stained with trypan blue.

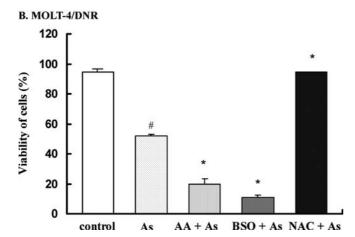
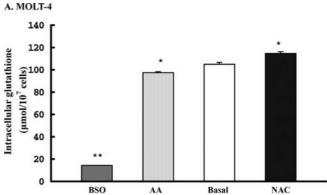

Measurement of intracellular GSH

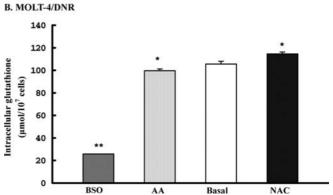
Cells (1×10^7) were treated for 48 h with various agents and collected by centrifugation at 1300 g for 10 min at 4°C. The cells were resuspended in 500 µl 50 mM cold MES buffer, and then homogenized with a Handy pestle (Toyobo Company, Osaka, Japan) or sonicated with a Handy sonic (Tomy Seiko Company, Tokyo, Japan). After centrifugation at 10,000 g for 15 min at 4°C, the supernatant was removed and stored on ice. The supernatant was deproteinated with 5% MPA at room temperature for 5 min and centrifuged at 3000 g for 4 min. Subsequently, 50 µl 4 M TEAM reagent per ml of the supernatant was added, and the solution was mixed immediately with a vortex mixer. The standard and samples were combined with fresh assay cocktail according to the manufacturer's instructions. Samples were incubated in the dark on an

Table 1 IC₅₀ values (μM) of As₂O₃ alone or in combination with BSO, AA, and NAC. Cells were treated with 100 μ mol/l BSO, 125 μ mol/l AA, and 10 mmol/l NAC for 72 h, and cell growth was determined by an MTT assay. Values are the means \pm SD of three independent experiments

Treatment	MOLT-4	MOLT-4/DNR
As ₂ O ₃ alone As ₂ O ₃ +AA (125 μM) As ₂ O ₃ +BSO (100 μM) As ₂ O ₃ +NAC (10 mM)	4.8 ± 0.2 $3.5 \pm 0.1**$ $1.2 \pm 0.0**$ > 8	5.3 ± 0.3 $4.3 \pm 0.1^*$ $1.1 \pm 0.0^{**}$ > 8

^{*}P < 0.01, **P < 0.001 vs As₂O₃ alone

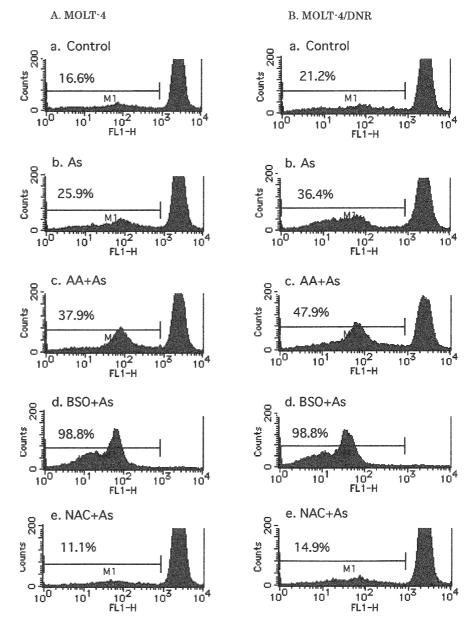




Fig. 2A, B Modulation of As_2O_3 -mediated reduction in viability of MOLT-4 (A) and MOLT-4/DNR (B) cells by BSO, AA, and NAC. Cells were incubated in the absence or presence of 5 μ mol/l As_2O_3 in the absence or presence of 100 μ mol/l BSO, 125 μ mol/l AA, or 10 mmol/l NAC for 72 h. Cell viability was determined by a dye exclusion test. Values are the means + SD of three independent experiments. $^{\#}P < 0.001$ vs control; $^{*}P < 0.001$ vs As_2O_3 alone

orbital shaker before measurement. The absorbance in the wells was measured at 415 nm using a microplate reader. The total GSH levels were determined by the End Point method.

Evaluation of MMP

MOLT-4 and MOLT-4/DNR cells (1×10^6 /ml) were treated with As₂O₃ alone or in combination with AA, BSO, or NAC. The cells


Fig. 3A, B Modulation of intracellular GSH levels by BSO, AA, and NAC in MOLT-4 (A) and MOLT-4/DNR (B) cells. Cells were incubated in the absence or presence of 100 μ mol/1 BSO, 125 μ mol/1 AA, or 10 mmol/1 NAC for 48 h. GSH levels were measured using a GSH assay kit as described in Materials and methods. Values are the means + SD of three independent experiments carried out in triplicate. *P<0.05, **P<0.01 vs basal level

were washed twice in a cold PBS (pH 7.2) and then incubated with $10~\mu g/ml$ Rh123 for 15 min. The cells were then washed twice in cold PBS, and were analyzed by flow cytometry. Living cells concentrate Rh123 in the mitochondria, while the MMP in cells undergoing apoptosis is disrupted and the mitochondria in such cells release Rh123 [39]. Therefore, the disruption of MMP and subsequent cell apoptosis can be detected by the decrease in the Rh123 fluorescence intensity in the cells. A total of 30,000 non-gated cells were analyzed using a FACSCalibur analyzer (Becton Dickinson, San Jose, Calif.) to obtain dot data. These data were further analyzed using CellQuest Software (Becton Dickinson).

Assessment of caspase-3 activity

Cells $(1\times10^6/\text{ml})$ were treated with As_2O_3 alone or in combination with AA, BSO, or NAC. After incubation, an aliquot of cells was placed into a 1.5-ml microcentrifuge tube, and the cells were then centrifuged and the entire culture medium was removed. Subsequently, 50 µl of a substrate solution containing 10 µM caspase-3 substrate was added to the cell pellet, and the suspension was mixed by flicking the tubes with the fingertip. The substrate molecule contains a peptide homodoubly labeled with a fluorophore. The cleaved substrate has specific fluorescence peak characteristics (λ_{ex} 505 nm and λ_{em} 530 nm), which can be detected by flow cytometry. After incubation of the tubes in 5% CO_2/air at 37°C in a humidified chamber for 60 min, the cells were washed once by adding 1 ml ice-cold flow cytometry dilution buffer. The cells were resus-

Fig. 4A, **B** Histograms showing the disruption of MMP in MOLT-4 cells (**A**) and MOLT-4/DNR cells (**B**) incubated for 72 h in the absence (*a*) or presence of 5 μmol/l As₂O₃ alone (*b*) or with a combination of 5 μmol/l As₂O₃ and 125 μmol/l AA (*c*), 100 μmol/l BSO (*d*), or 10 mmol/l NAC (*e*). The percentage given in each histogram is the percentage of cells with decreased MMP

pended in 1 ml fresh dilution buffer for analysis by flow cytometry. All samples were analyzed within 6 min of the end of the 37°C incubation.

Apoptosis assays

After collecting data for caspase-3 activity, 5 μ l 50 μ g/ml PI was added and samples were reanalyzed flow cytometrically according to the manufacturer's instructions. The data were reanalyzed within 5 min of PI addition, and the caspase $^+/PI^-$ cells were considered apoptotic cells.

Morphological changes of cells

MOLT-4 and MOLT-4/DNR cells $(5\times10^5/\text{ml})$ were cultured in the absence or presence of As_2O_3 alone or in combination with AA, BSO, or NAC for 72 h in an atmosphere comprising 5% CO_2/air at 37°C in a humidified chamber. Pictures were taken under a microscope (Olympus Optical Company, Tokyo, Japan).

Statistics

Student's *t*-test was used to compare the data between two groups, and the Bonferroni/Dun multiple comparison test was used to compare the data among multiple (more than three) groups. In each case, *P* values less than 0.05 were considered to be significant.

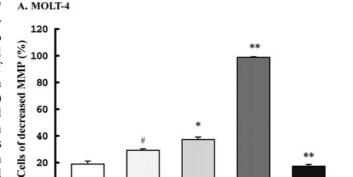
Results

Effects of BSO, AA, or NAC on the growth-inhibitory action of As₂O₃ in MOLT-4 and MOLT-4/DNR cells

After 72 h of treatment, the growth-inhibitory effects of 5 μ mol/l As₂O₃ on MOLT-4 and MOLT-4/DNR cells were significantly enhanced by 100 μ mol/l BSO and 125 μ mol/l AA (Fig. 1). BSO is known to be a selective inhibitor of γ -glutamylcysteine synthetase, the rate-limiting enzyme in GSH synthesis [5]. The IC₅₀ values of

As₂O₃ on the cell growth of the MOLT-4 and MOLT-4/ DNR cells were 4.8 µmol/l and 5.3 µmol/l, respectively (Table 1). Thus, BSO and AA increased sensitivity to As₂O₃ treatment. The IC₅₀ values of As₂O₃ decreased significantly to less than 2 µmol/l in the presence of 100 μ mol/l BSO (P < 0.001). The IC₅₀ values of As₂O₃ in both cell lines were also decreased significantly (P < 0.01) by the addition of AA (Table 1). Whereas, 100 µmol/l BSO and 125 µmol/l AA alone did not affect the growth of either MOLT-4 or MOLT-4/DNR cells (the IC₅₀ cells of both BSO and AA were higher than 500 μmol/l). In contrast, NAC efficiently protected both MOLT-4 and MOLT-4/DNR cells from the cytotoxicity of As₂O₃, when the two cell lines were incubated with $5 \, \mu mol/l$ As₂O₃ in combination with 10 mmol/l NAC for 72 h (Fig. 1). Thus, NAC made the cells of these two cell lines unresponsive to the growth-inhibitory effect of As₂O₃. The IC₅₀ values of As₂O₃ in the presence of NAC in these cell lines were determined to be higher than 8 μmol/l (Table 1).

The viability of MOLT-4 and MOLT-4/DNR cells was significantly decreased following incubation for 72 h with 5 μmol/l As₂O₃ plus 100 μmol/l BSO or 125 μmol/l AA, as compared to cells treated with As₂O₃ alone (P < 0.001, Fig. 2). In contrast, 10 mmol/l NAC markedly increased the viability of these cells under the same culture conditions (P < 0.001, Fig. 2).


Intracellular GSH content modulated by BSO, AA, or NAC in MOLT-4 and MOLT-4/DNR cells

The GSH contents of MOLT-4 and MOLT-4/DNR cells were 105.0 ± 1.6 and $105.6 \pm 2.4 \,\mu M/10^7$ cells, respectively, when the two cell lines were incubated in the absence of modulating agents for 48 h. Thus, the intracellular GSH contents of MOLT-4 and MOLT-4/DNR cells were at the same level.

MOLT-4 and MOLT-4/DNR cells were incubated in the absence or presence of 100 µmol/l BSO, 125 µmol/l AA or 10 mmol/l NAC for 48 h. These treatments resulted in significant changes in GSH content (Fig. 3). BSO decreased the GSH content to a greater extent (P < 0.01), and AA also significantly decreased GSH level (P < 0.05) in both MOLT-4 (Fig. 3A) and MOLT-4/DNR (Fig. 3B) cells. Whereas, NAC significantly increased the GSH content (P < 0.05) in these cells.

Disruption of MMP in MOLT-4 and MOLT-4/DNR cells

The disruption of MMP by As₂O₃ and its modulation by AA, BSO or NAC are presented in Fig. 4. In each histogram, the percentage of cells with decreased MMP is indicated. The disruption of MMP in MOLT-4 (Figs. 4A and 5A) and MOLT-4/DNR (Figs. 4B and 5B) cells was significantly higher (P < 0.01) after 72 h treatment with 5 μ mol/l As₂O₃ than in untreated cells. This

40

20 0 Control BSO+As NAC+As As AA+As

B. MOLT-4/DNR 120 Cells of decreased MMP (%) 100 80 60 40 20 0

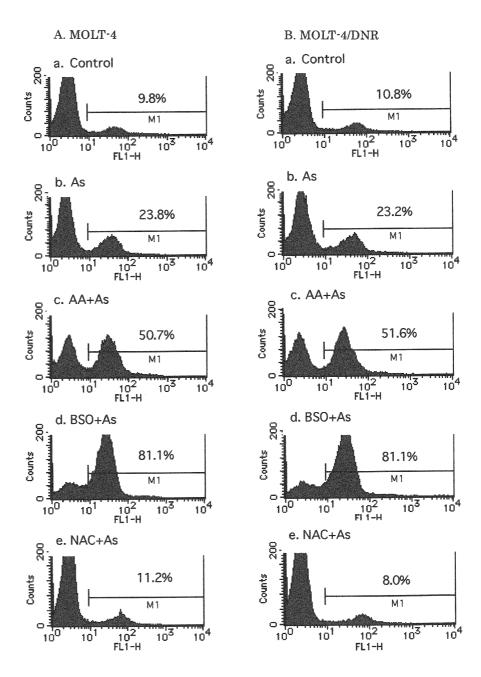
Fig. 5A, B MMP disruption in MOLT-4 cells (A) and MOLT-4/ DNR cells (B) treated with 5 µmol/l As₂O₃ alone or with a combination of 5 µmol/l As₂O₃ with 125 µmol/l AA, 100 µmol/l BSO, or 10 mmol/1 NAC for 72 h. Values are the means + SD of three independent experiments. ${}^{\#}P < 0.01$ vs control; ${}^{*}P < 0.01$, **P < 0.001 vs As₂O₃ alone

AA+As

As

BSO+As

NAC + As

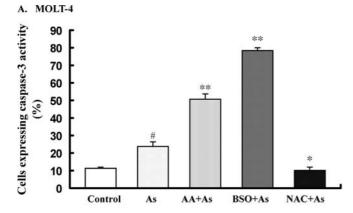

As₂O₃-induced disruption of MMP was markedly enhanced by AA (P < 0.01) and BSO (P < 0.001) in both MOLT-4 (Fig. 5A) and MOLT-4/DNR (Fig. 5B) cells (Fig. 4Ac,d, Bc,d). In particular, BSO elevated this ability almost completely (Fig. 5), while the As₂O₃-induced disruption of MMP was blocked by NAC in these cells (Fig. 4Ad,e, Bd,e, and Fig. 5). In contrast, 125 μmol/l AA, 100 μmol/l BSO and 10 mmol/l NAC treatment alone did not influence the MMP of these cells (data not shown).

Activation of caspase-3 in MOLT-4 and MOLT-4/DNR cells

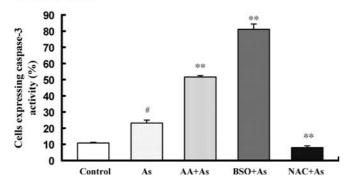
Control

The activation of caspase-3 by As_2O_3 and its modulation by AA, BSO or NAC is presented in Fig. 6. In each histogram the percentage of cells expressing relatively high activity of caspase-3 is indicated. After 72 h of treatment, 5 µmol/l As₂O₃ significantly induced caspase-3 activity in MOLT-4 (P < 0.01, Fig. 7A) and MOLT-4/DNR (P < 0.01, Fig. 7B) cells (Fig. 6). This activation of caspase-3 was markedly potentiated by AA

Fig. 6A, B Histograms showing the changes in percentage of MOLT-4 cells (A) and MOLT-4/DNR cells (B) exhibiting caspase-3 activity following treatment for 72 h in the absence (a) or presence of 5 μmol/l As₂O₃ alone (b) or with a combination of 5 μmol/l As₂O₃ with 125 μmol/l AA (c), 100 μmol/l BSO (d), or 10 mmol/l NAC (e). The percentage given in each histogram is the percentage of cells with caspase-3 activity



(P < 0.001) and BSO (P < 0.001) in both MOLT-4 (Fig. 7A) and MOLT-4/DNR (Fig. 7B) cells (Figs. 6Ac,d, Bc,d). In particular, BSO elevated the levels of caspase-3 activity to a greater extent, whereas the enzyme activation by As₂O₃ was completely attenuated by NAC in both MOLT-4 (P < 0.01, Fig. 7A) and MOLT-4/DNR (P < 0.001, Fig. 7B) cells (Fig. 6Ae, Be). In contrast, 125 μmol/l AA, 100 μmol/l BSO and 10 mmol/l NAC treatment alone did not stimulate the caspase-3 activity of these cells (data not shown).


Modulation of As₂O₃-induced apoptosis by AA, BSO, or NAC in MOLT-4 and MOLT-4/DNR cells

As₂O₃-induced apoptosis and its modulation by AA, BSO or NAC are presented in Fig. 8. The dots in the

upper left quadrant are those of caspase +/PI cells indicating apoptotic cells. In each dot plot the percentage of apoptotic cells is indicated. In these experiments, the cells were treated in the absence or presence of 5 μmol/l As₂O₃ alone or in combination with 100 μmol/l BSO, 125 µmol/l AA or 10 mmol/l NAC. 5 µmol/l As₂O₃ treatment alone induced apoptosis in both MOLT-4 (P < 0.01, Fig. 9A) and MOLT-4/DNR cells (P < 0.001, Fig. 9B) as compared to the control cells (Figs. 8Aa,b, Ba,b). BSO and AA significantly (P < 0.001) increased the percentage of apoptotic cells induced by As₂O₃ in both MOLT-4 (Fig. 9A) and MOLT-4/DNR cells (Figs. 9B, and 8Ac,d, Bc,d), whereas NAC markedly decreased the percentage of apoptotic cells induced by As₂O₃ in both MOLT-4 (P < 0.001, Fig. 9A) and MOLT-4/DNR (P < 0.01,

B. MOLT-4/DNR

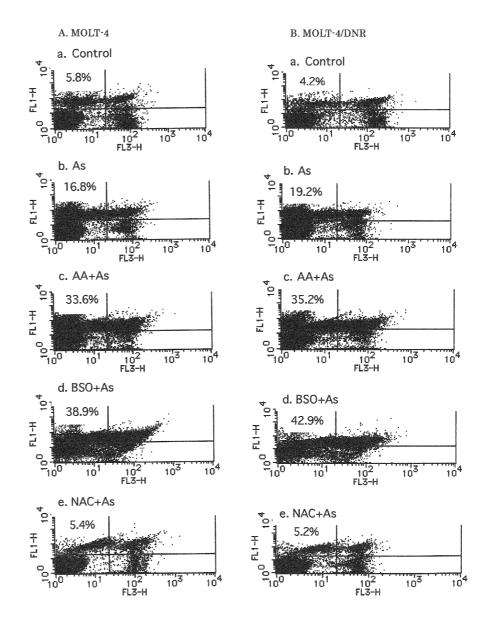
Fig. 7A, B Changes in caspase-3 activity after treating MOLT-4 cells (**A**) and MOLT-4/DNR cells (**B**) for 72 h with 5 μ mol/l As₂O₃ alone or with a combination of 5 μ mol/l As₂O₃ with 125 μ mol/l AA, 100 μ mol/l BSO, or 10 mmol/l NAC. Values are the means+SD of three independent experiments. $^{\#}P$ <0.05 vs control; $^{*}P$ <0.01, $^{**}P$ <0.001 vs As₂O₃ alone

Fig. 9B) cells (Fig. 8Ae, Be). Cells treated with $100 \ \mu mol/l$ BSO, $125 \ \mu mol/l$ AA or $10 \ mmol/l$ NAC alone did not show an increase in the percentage of apoptotic cells (data not shown).

BSO and AA potentiated the apoptotic morphology induced by As_2O_3 in MOLT-4 (Fig. 10Ac, Ad) and MOLT-4/DNR (Fig. 10Bc, Bd) cells. Whereas, NAC markedly restored a normal morphology to MOLT-4 (Fig. 10Ae) and MOLT-4/DNR (Fig. 10Be) cells treated with As_2O_3 , in comparison to those treated with As_2O_3 alone (Fig. 10Ab, Bb).

Discussion

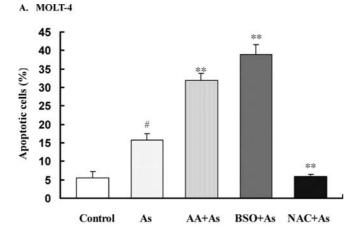
GSH content had a decisive effect on As₂O₃-mediated cytotoxicity

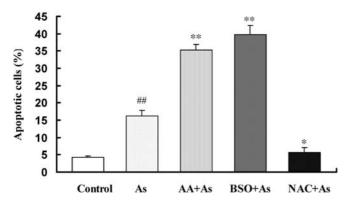

Our previous work has shown that the effects of As_2O_3 on the growth of MOLT-4/DNR cells are the same as its effects on parental MOLT-4 cells, and the actions of As_2O_3 do not influence their P-gp expression or function

[15]. The findings of this study indicate that the intracellular GSH levels in parental MOLT-4 and MOLT-4/DNR cells are almost the same. A reduction in GSH levels following incubation with BSO and AA enhanced the As₂O₃-mediated inhibition of cell growth, disruption of MMP, activation of caspase-3 and apoptosis in MOLT-4 cells and MOLT-4/DNR cells. Whereas, NAC elevated the intracellular GSH levels and protected the cells from the cytotoxicity of As₂O₃. These findings led us to conclude that the sensitivity of both MOLT-4 and MOLT-4/DNR cells to As₂O₃ is closely correlated with intracellular GSH levels.

GSH is a low molecular weight, non-protein, sulfhydryl compound and its role in the protection of cells from oxidative injury has been documented in a study that demonstrated the enhancement of damage by depletion of cellular GSH [33]. GSH exerts antioxidant effects and it can conjugate with and thereby inactivate molecules that generate free radicals. Trivalent arsenic has been reported to form a complex with GSH, forming a transient As(GS)₃ molecule [49], which is easily excreted by the MRP2/cMOAT transporter [20]. Thus, GSH maintains an optimum cellular redox potential, and depletion, physical efflux from the cell, or intracellular redistribution of GSH are associated with the onset of apoptosis [6]. BSO is a selective inhibitor of γ -glutamylcysteine synthetase, the rate-limiting enzyme in the synthesis of GSH. Cells incubated with BSO are depleted of GSH as a result of the inhibition of enzymatic GSH production [33].

AA has been shown to have pro-oxidant properties [3, 40]. Auto-oxidation of AA to dehydroascorbate results in the production of H₂O₂ [42, 50]. Dehydroascorbate is then rapidly reduced back to AA by glutaredoxin in a GSH-dependent manner. This reduction of dehydroascorbate to AA results in a decrease in intracellular GSH [51, 53]. Clinically relevant doses of AA act as oxidizing agents decreasing the GSH content of the cells, and synergizes with the growth-inhibitory and apoptosis-inducing effects of As₂O₃. This potentiating effect of AA is due to its capacity to undergo auto-oxidation resulting in the formation of H₂O₂, which enhances the effects of As₂O₃ [12]. Indeed, it has been found that AA significantly synergizes with As₂O₃ in treating patients with acute myeloid leukemia (AML) [2]. NAC is an antioxidant since it donates a cysteine to the de novo synthesis of GSH. As₂O₃ has been reported to bind to vicinal thiol groups [52], while NAC contains two such thiol groups [12] and gives GSH. Taking these observations into consideration, the decrease in GSH levels following incubation with BSO and AA could abate As₂O₃ efflux, thereby causing an intracellular accumulation of As₂O₃ and enhancing its cytotoxicity. In contrast, the increase in intracellular GSH levels following incubation with NAC could enhance As₂O₃ efflux, and thereby attenuate the toxic effects of As_2O_3 .


Fig. 8A, B Dot plots showing apoptotic MOLT-4 cells (A) and MOLT-4/DNR cells (B) following incubation for 72 h in the absence (a) or presence of 5 μ mol/l As₂O₃ alone (b) or with a combination of 5 µmol/l As_2O_3 with 125 μ mol/l AA (c), 100 μmol/l BSO (*d*), or 10 mmol/l NAC (e). The percentage given in each dot plot is the percentage of apoptotic cells. The dots in the upper left quadrant are caspase +/ PI cells indicating apoptotic cells (abscissa PI-related intensity, ordinate caspase activity-related intensity)


As₂O₃-induced apoptosis via depletion of GSH, loss of MMP and activation of caspase-3

Intracellular GSH depletion results in morphological and functional changes to mitochondria [46]. It has been found that the changes to mitochondria after treatment with As₂O₃ can be divided into three stages [46]. In the early stage, mitochondria appear to undergo an adaptive proliferation. In the middle stage, a degenerative change can be observed. In the late stage, the mitochondria swell and this is followed by damage to the outer membrane and cell death which exhibits apoptotic changes to the nucleus. Mitochondria are known to play a major role in apoptosis triggered by many stimuli [9]. In the first stage of apoptosis, signal transduction cascades or damage pathways are activated. Subsequently, the mitochondrial membrane function is lost, and then proteins released from mitochondria cause the activation of catabolic proteases and nucleases [42]. Caspases are cysteine proteases that mediate apoptosis by proteolysis of specific substrates [21]. Caspase-3 is considered a primary executioner of apoptosis [43].

In the present study, the As₂O₃-mediated growth inhibition in parental MOLT-4 and MOLT-4/DNR cells is similar to that observed in our previous work [15]. These suppressive effects of As₂O₃ can be potentiated by BSO, which inhibits synthesis of GSH, and by AA, which reduces GSH-dependent dehydroascorbate. In contrast, the effect of As₂O₃ was attenuated by NAC, which promotes synthesis of GSH in both MOLT-4 and MOLT-4/DNR cells. Furthermore, the disruption of MMP and activation of caspase-3 are not only caused by As₂O₃ itself, but are also enhanced by AA and BSO and blocked by NAC in both MOLT-4 and MOLT-4/DNR cells. The extent of MMP disruption and caspase-3 activation are closely associated with intracellular GSH levels and occur in a time-dependent manner. After 72 h of treatment with As₂O₃ alone or in combination with

B. MOLT-4/DNR

Fig. 9A, B As₂O₃-induced apoptosis and its modulation by BSO, AA, or NAC in MOLT-4 cells (**A**) and MOLT-4/DNR cells (**B**) treated with 5 μ mol/l As₂O₃ alone or with a combination of 5 μ mol/l As₂O₃ with 125 μ mol/l AA, 100 μ mol/l BSO, or 10 mmol/l NAC for 72 h. Values are the means + SD of three independent experiments. $^{\#}P < 0.01$, $^{\#}P < 0.001$ vs control; $^{*}P < 0.01$, $^{**}P < 0.001$ vs As₂O₃ alone

BSO or AA, the percentages of cells with decreased MMP and activated caspase-3 were higher than the percentage of cells that underwent apoptosis. These results suggest that MMP collapse and caspase-3 activation occur prior to apoptosis.

Recent reports suggest that sensitivity to As₂O₃ correlates with intracellular GSH levels in cancer cells [55]. The GSH content modulates the growth-inhibitory and apoptosis-inducing effects of arsenicals [7, 19, 33, 34, 41]. Cells expressing higher levels of GSH or GSH-associated enzymes are less sensitive to As₂O₃ than cells expressing lower levels of these molecules [19, 25]. Arsenic-resistant cells are also reported to contain higher levels of GSH [22, 25, 29]. Moreover, cells with increased GSH levels can be sensitized to As₂O₃ by agents that deplete intracellular GSH [7, 22]. The cytotoxic effects of As₂O₃ may be influenced by modulators of GSH [12, 13, 23, 32], especially in drug-resistant cell lines [10, 38].

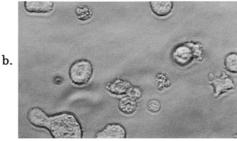
A decrease in GSH levels in cells acts as a potent early activator of apoptosis signaling [1]. Depletion of GSH, especially mitochondrial GSH, is believed to induce the

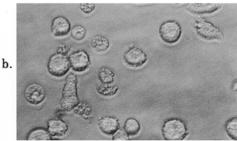
loss of MMP [31]. Mitochondrial permeability transition resulting from intracellular thiol depletion is known to be a critical event in apoptosis [26, 54]. Mitochondria undergo major changes in membrane integrity before classical signs of apoptosis become manifest, and these changes lead to disruption of the MMP [48]. These alterations in mitochondrial activity can be distinguished and monitored by the fluorescent dye Rh123 on flow cytometry [42, 50], which specifically stains mitochondria depending on the MMP [24, 35, 39]. Mitochondrial depolarization precedes caspase-3 activation and apoptosis [43], and apoptotic cells express high caspase-3 activity [16, 58]. Caspase-3 is considered to be a primary executioner of apoptosis [4]. Caspase-3 activation has been causally related to the release of mitochondrial cytochrome c in the cytoplasm as a result of the collapse of the MMP [27].

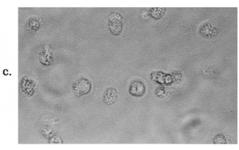
 As_2O_3 is known to act at several points in apoptosis induced through mitochondrial pathways [8], which includes the forming of reversible bonds with thiol groups [49] and the depletion of GSH [7, 22, 34, 55], loss of MMP [17], and activation of caspase-3 [10, 17, 18, 30, 36]. From these points of view, we examined the apoptosis-inducing effect of As_2O_3 in the presence of GSH modulators in MOLT-4 and MOLT-4/DNR cells.

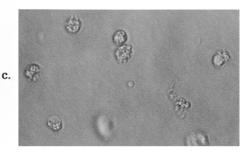
We conclude that As₂O₃ induces apoptosis in MOLT-4 and MOLT-4/DNR cells via the depletion of intracellular GSH, and subsequent MMP disruption and caspase-3 activation.

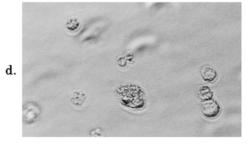
References

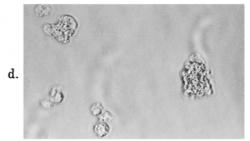

- 1. Armstrong JS, Steinauer KK, Hornung B, Irish JM, Lecane P, Birrell GW, Peehl DM, Knox SJ (2002) Role of glutathione depletion and reactive oxygen species generation in apoptotic signaling in a human B lymphoma cell line. Cell Death Differ 9.252
- Bachleitner-Hofmann T, Gisslinger B, Grumbeck E, Gisslinger H (2001) Arsenic trioxide and ascorbic acid: synergy with potential implications for the treatment of acute myeloid leukemia? Br J Haematol 112:783
- Bijur GN, Ariza ME, Hitchcock CL, Williams MV (1997) Antimutagenic and promutagenic activity of ascorbic acid during oxidative stress. Environ Mol Mutagen 30:339
- Carambula SF, Matikainen T, Lynch MP, Flavell RA, Dias Goncalves PB, Tilly JL, Rueda BR (2002) Caspase-3 is a pivotal mediator of apoptosis during regression of the ovarian corpus luteum. Endocrinology 143:1495
- 5. Chen GQ, Zhu J, Shi XG, Ñi JH, Zhong HJ, Si GY, Jin XL, Tang W, Li XS, Xong SM, Shen ZX, Sun GL, Ma J, Zhang P, Zhang TD, Gazin C, Naoe T, Chen SJ, Wang ZY, Chen Z (1996) In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As₂O₃) in the treatment of acute promyelocytic leukemia: As₂O₃ induces NB4 cell apoptosis with down regulation of Bcl-2 expression and modulation of PML-RAR alpha/PML proteins. Blood 88:1052
- Coffey RN, Watson RW, Hegarty NJ, O'Neill A, Gibbons N, Brady HR, Fitzpatrick JM (2000) Thiol-mediated apoptosis in prostate carcinoma cells. Cancer 88:2092
- Dai J, Weinberg RS, Waxman S, Jing Y (1999) Malignant cells can be sensitized to undergo growth inhibition and apoptosis by arsenic trioxide through modulation of the glutathione redox system. Blood 93:268

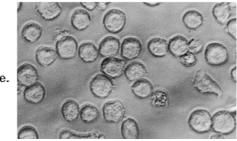

Fig. 10A, B Morphology of MOLT-4 cells (A) and MOLT-4/DNR cells (B) after treatment with 5 μmol/l As₂O₃ or combination of 5 µmol/l As₂O₃ with 100 µmol/l BSO, 125 µmol/l AA, or 10 mmol/l NAC for 72 h (a untreated cells, b cells treated with 5 μ mol/l As₂O₃ alone, c cells treated with 5 μmol/l As₂O₃ combined with 125 μmol/l AA, d cells treated with 5 µmol/l As₂O₃ combined with 100 μmol/l BSO, e cells treated with 5 µmol/l As₂O₃ combined with 10 mmol/l NAC

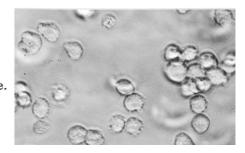

A. MOLT-4











- 8. Davison K, Mann KK, Miller WH Jr (2002) Arsenic trioxide: mechanisms of action. Semin Hematol 39:3
- 9. Desagher S, Martinou JC (2000) Mitochondria as the central control point of apoptosis. Trends Cell Biol 10:369
- Gartenhaus RB, Prachand SN, Paniaqua M, Li Y, Gordon LI (2002) Arsenic trioxide cytotoxicity in steroid and chemotherapy-resistant myeloma cell lines: enhancement of apoptosis by manipulation of cellular redox state. Clin Cancer Res 8:566
- 11. Gianni M, Koken MH, Chelbi-Alix MK, Benoit G, Lanotte M, Chen Z, de The H (1998) Combined arsenic and retinoic acid
- treatment enhances differentiation and apoptosis in arsenic-resistant NB4 cells. Blood 91:4300
- Grad JM, Bahlis NJ, Reis I, Oshiro MM, Dalton WS, Boise LH (2001) Ascorbic acid enhances arsenic trioxide-induced cytotoxicity in multiple myeloma cells. Blood 98:805
- 13. Griffith OW, Meister A (1979) Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocyteine sulfoximine). J Biol Chem 254:7558
- 14. Hu XM, Ma L, Hu NP, Wang ZF, Yang L, Li L, Wang ZX, Wang HZ, Wang N, Liu C, Liu F, Yang JM, Ma R (1999)

- AiLing I (As₂O₃) in treating 62 cases of acute promyelocytic leukemia (in Chinese). Chin J Integrat Chin West Med 19:473
- 15. Hu XM, Hirano T, Oka K (2003) Arsenic trioxide induces apoptosis equally to T lymphoblastoid leukemia MOLT-4 cells and P-gp expressing daunorubicin-resistant MOLT-4 cells. Cancer Chemother Pharmacol 51:119
- Iguchi K, Hirano K, Ishida R (2002) Activation of caspase-3, proteolytic cleavage of DFF and no oligonucleosomal DNA fragmentation in apoptotic molt-4 cells. J Biochem (Tokyo) 131:469
- 17. Jia P, Chen G, Huang X, Cai X, Yang J, Wang L, Zhou Y, Shen Y, Zhou L, Yu Y, Chen S, Zhang X, Wang Z (2001) Arsenic trioxide induces multiple myeloma cell apoptosis via disruption of mitochondrial transmembrane potentials and activation of caspase-3. Chin Med J (Engl) 114:19
- activation of caspase-3. Chin Med J (Engl) 114:19
 18. Jiang XH, Wong BC, Yuen ST, Jiang SH, Cho CH, Lai KC, Lin MC, Kung HF, Lam SK, Chun-Yu Wong B (2001) Arsenic trioxide induces apoptosis in human gastric cancer cells through up-regulation of p53 and activation of caspase-3. Int J Cancer 91:173
- 19. Jing Y, Dai J, Chalmers-Redman RM, Tatton WG, Waxman S (1999) Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood 94:2102
- Kala SV, Neely MW, Kala G, Prater CI, Atwood DW, Rice JS, Lieberman MW (2000) The MRP2/cMOAT transporter and arsenic-glutathione complex formation are required for biliary excretion of arsenic. J Biol Chem 275:33404
- Kirsch DG, Doseff A, Chau BN, Lim DS, de Souza-Pinto NC, Hansford R, Kastan MB, Lazabnik YA, Hardwich JM (1999) Caspase-3-dependent cleavage of bcl-2 promotes release of cytochrome c. J Biol Chem 274:21155
- Kitamura K, Minami Y, Yamamoto K, Akao Y, Kiyoi H, Saito H, Naoe T (2000) Involvement of CD95-independent caspase 8 activation in arsenic trioxide-induced apoptosis. Leukemia 14:1743
- 23. Kito M, Akao Y, Ohishi N, Yagi K, Nozawa Y (2002) Arsenic trioxide-induced apoptosis and its enhancement by buthionine sulfoximine in hepatocellular carcinoma cell lines. Biochem Biophys Res Commun 291:861
- 24. Lampidis TJ, Salet C, Moreno G, Chen LB (1984) Effects of the mitochondrial probe rhodamine 123 and related analogs on the function and viability of pulsating myocardial cells in culture. Agents Actions 14:751
- 25. Lee TC, Wei ML, Chang WJ, Ho IC, Lo JF, Jan KY, Huang H (1989) Elevation of glutathione levels and glutathione S-transferase activity in arsenic-resistant Chinese hamster ovary cells. In Vitro Dev Biol 25:442
- Liu J, Shen HM, Ong CN (2001) Role of intracellular thiol depletion, mitochondrial dysfunction and reactive oxygen species in Salvia miltiorrhiza-induced apoptosis in human hepatoma HepG2 cells. Life Sci 69:1833
- Liu W, Liu R, Chun JT, Bi R, Hoe W, Schreiber SS, Baudry M (2001) Kainate cytotoxicity in organotypic hippocampal slice culture: evidence for multiple apoptotic pathway. Brain Res 916:239
- Liu ZL, Onda K, Tanaka S, Toma T, Hirano T, Oka K (2002) Induction of multidrug resistance in MOLT-4 cells by anticancer agents is closely related to increased expression of functional P-glycoprotein and MDR1 mRNA. Cancer Chemother Pharmacol 49:391
- 29. Lo JF, Wang HF, Tam MF, Lee TC (1992) Protein glutathione S-transferase π in an arsenic resistant Chinese hamster ovary cell line. Biochem J 288:977
- 30. Mahieux R, Pise-Masison C, Gessain A, Brady JN, Olivier R, Perret E, Misteli T, Nicot C (2001) Arsenic trioxide induces apoptosis in human T-cell leukemia virus type 1- and 2-infected cells by a caspase-3-dependent mechanism involving bcl-2 cleavage. Blood 98:3762
- 31. Mari M, Bai J, Cederbaum AI (2002) Adenovirus-mediated overexpression of catalase in the cytosolic or mitochondrial compartment protects against toxicity caused by glutathione

- depletion in HepG2 cells expressing CYP2E1. J Pharmacol Exp Ther 301:111
- Nakagawa Y, Akao Y, Morikawa H, Hirata I, Katsu K, Naoe T, Ohishi N, Yagi K (2002) Arsenic trioxide-induced apoptosis through oxidative stress in cells of colon cancer cell lines. Life Sci 70:2253
- Ochi T, Kaise T, Oya-Ohta Y (1994) Glutathione plays different roles in the induction of the cytotoxic effects of inorganic and organic arsenic compounds in cultured BALB/c 3T3 cells. Experientia 50:115
- Ochi T, Nakajima F, Sakurai T, Kaise T, Oya-Ohta Y (1996)
 Dimethylarsinic acid cause apoptosis in HL-60 cells via interaction with glutathione. Arch Toxicol 70:815
- 35. O'Connor JE, Vargas JL, Kimler BF, Hernandez-Yago J, Grisolia S (1988) Use of rhodamine to investigate alterations in mitochondrial activity in isolated mouse liver mitochondria. Biochem Biophys Res Commun 151:568
- 36. Park JW, Choi YJ, Jang MA, Baek SH, Lim JH, Tony P, Kwon TK (2001) Arsenic trioxide induces G2/M growth arrest and apoptosis after caspase-3 activation and bcl-2 phosphorylation in promonocytic U937 cells. Biochem Biophys Res Commun 286:726
- 37. Perkin C, Kim CN, Fang G, Bhalla KN (2000) Arsenic induces apoptosis of multidrug-resistant human myeloid leukemia cells that express Bcr-Abl or overexpress MDR, MRP, Bcl-2, or Bcl-x(L). Blood 95:1014
- 38. Pu YS, Hour TC, Chen J, Huang CY, Guan JY, Lu SH (2002) Arsenic trioxide as a novel anticancer agent against human transitional carcinoma—characterizing its apoptotic pathway. Anticancer Drugs 13:293
- 39. Ronot X, Benel L, Adolphe M, Mounolou JC (1986) Mitochondrial analysis in living cells: the use of rhodamine 123 and flow cytometry. Biol Cell 57:1
- Sakagami H, Satoh K (1997) Modulating factors of radical intensity and cytotoxic activity of ascorbate (review). Anticancer Res 17:3513
- Scott N, Halelid KM, MacKenzie NE, Carter DE (1993) Reactions of arsenic (III) and arsenic (V) species with glutathione. Chem Res Toxicol 6:102
- Shapiro HM (2000) Membrane potential estimation by flow cytometry. Methods 21:271
- 43. Shen HM, Yang CF, Ding WX, Liu J, Ong CN (2001) Superoxide radical-initiated apoptotic signaling pathway in selenite-treated HepG2 cells: mitochondria serve as the main target. Free Radic Biol Med 30:9
- 44. Shen L, Chen TX, Wang YP, Lin Z, Zhao HJ, Zu YZ, Wu G, Ying DM (2000) As2O3 induces apoptosis of the human B lymphoma cell line MBC-1. J Biol Regul Homeost Agents 14:116
- 45. Shen ZX, Chen GQ, Ni JH, Li XS, Xiong SM Q, Qiu QY, Zhu J, Tang W, Sun GL, Yang KQ, Chen Y, Zhou L, Fang ZW, Wang YT, Ma J, Zhang P, Zhang TD, Chen SJ, Chen Z, Wang ZY (1997) Use of arsenic trioxide (As₂O₃) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood 89:3354
- 46. Shen ZY, Shen J, Li QS, Chen JY, Yi Z (2002) Morphological and functional changes of mitochondria in apoptotic esophageal carcinoma cells induced by arsenic trioxide. World J Gastroenterol 8:31
- 47. Soignet SL, Frankel SR, Douer D, Tallman MS, Kantarjian H, Calleja E, Stone RM, Kalaycio M, Scheinberg DA, Steinherz P, Sievers EL, Coutre S, Dahlberg S, Ellison R, Warrell RP Jr (2001) United States multicenter study of arsenic trioxide in relapsed acute promyelocytic leukemia. J Clin Oncol 19:3852
- Susin SA, Zamzami N, Kroemer G (1998) Mitochondria as regulators of apoptosis: doubt on more. Biochim Biophys Acta 1366:151
- Thomas DJ, Styblo M, Lin S (2001) The cell metabolism and systemic toxicity of arsenic (review). Toxicol Appl Pharmacol 176:127
- Thomas WD, Zhang XD, Franco AV, Nguyen T, Hersey P (2000) TNF-related apoptosis-inducing ligand-induced apoptosis of melanoma is associated with changes in mitochondrial

- membrane potential and perinuclear clustering of mitochondria. J Immunol 165:5612
- Vera JC, Rivas CL, Fischbarg J, Golde DW (1993) Mammalian facilitative hexose transporters mediate the transport of dehydroascorbic acid. Nature 364:79
- 52. Watson RW, Redmond HP, Wang JH, Bouchier-Hayes D (1996) Mechanism involved in sodium arsenite-induced apoptosis of human neutrophils. J Leukoc Biol 60:625
- 53. Welch RW, Wang Y, Crossman A Jr, Park JB, Kirk KL, Levine M (1995) Accumulation of vitamin C (ascorbate) and its oxidized metabolite dehydroascorbic acid occurs by separate mechanisms. J Biol Chem 270:12584
- 54. Yang CF, Shen HM, Ong CN (2000) Intracellular thiol depletion causes mitochondrial permeability transition in ebselen-induced apoptosis. Arch Biochem Biophys 380:319

- Yang CH, Kuo, ML, Chen JC, Chen YC (1999) Arsenic trioxide sensitivity is associated with low level of glutathione in cancer cells. Br J Cancer 81:796
- Zhang W, Ohnishi K, Shigeno K, Fujisawa S, Naito K, Nakamura S, Takeshita K, Takeshita A, Ohno R (1998) The induction of apoptosis and cell cycle arrest by arsenic trioxide in lymphoid neoplasms. Leukemia 12:1383
- Zhang Y, Nie L (2001) Studies of apoptosis of malignant lymphoma cells induced by arsenic trioxide. Cell Biol Int 25:1003
- 58. Zhu XF, Liu ZC, Xie BF, Li ZM, Feng GK, Xie HH, Wu SJ, Yang RZ, Wei XY, Zeng YX (2002) Involvement of caspase-3 activation in squamocin-induced apoptosis in leukemia cell line HL-60. Life Sci 70:1259